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Abstract

In this paper, a brief review of Pulsed Phase Thermography (PPT) principles are recalled followed by first investigations of neural networks applied to quantitative depth discrimination in PPT, in the case of aluminum laminates. The paper includes theory and experimental investigations.

1. Pulsed Phase Thermography

Pulsed Phase Thermography (or PPT) has been recently introduced as a novel signal processing method in infrared thermography for non-destructive evaluation [1]. PPT principle

is as follow. The specimen is flashed heated and the subsequent specimen surface temperature decay is recorded. The Fast Fourier Transform (FFT) of the temporal temperature decay is performed next on a pixel per pixel basis. This allows to extract phase and amplitude images at specific frequencies. PPT has some attractive features in term of defect detection capabilities as it shares advantages of both conventional pulsed infrared thermography [2] and lockin thermography [3,4]. More details can be found in [5], Figure 1 illustrates PPT principle.

2. Thermal model

In order to predict specimen behaviour, analyse phase evolution and thus establish the neural network architecture, a simple 1-D thermal model was developed. It is based on the equation (refer to [6,7]):
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Solving this equation gives temperature T in the material for depth x and time t. Figure 2 shows various simulated phase spectra as function of depth and frequency of interest.

3. Experimental set-up

The experimental apparatus includes a Cincinnati Electronics 160 FPA camera (short wave: 2-5 mm, 20° lens) with a workstation-based computer (Sun microsystem Sparc 4) and dedicated software. Although this camera allows a maximum recording rate of 54 images per second, tests performed for this paper were made at a reduced sampling frequency of only 14 Hz. Finally, the heating system comprises two high power flashes (15 ms duration, 6.4 KJ) with back reflector, figure 3.

4. Neural network (NN)

Neural networks (NN) are known for their capacity to deal with complex non linear problems with only partial noisy data available. NN are thus advantageous to rely on to perform the inverse problem of interest here which consists to extract depth from phase information in PPT. Previous works reported did not used phase information as NN inputs but thermal contrast instead [8-10]. We refer interested readers to reference [11] for an introduction to NN.

After many trials using the model discussed previously we settled for a multi-layer perceptron with back-propagation learning and one hidden layer in two configurations: 9 x17 and 8 x 21.

This architecture was trained with 325 filtered experimental data sets corresponding to depth values of 0.04 to 10 mm. The experimental set-up discussed previously provides 64 thermograms and thus 64 phase and 64 amplitude images (filtering: temperature data – sliding Gaussian window + phase spectra - simple averaging in a 3x3 kernel). Due to the symmetry property of the Fast Fourier Transform, only 32 of these are relevant and serve as inputs to the NN. The single neuron output provides the depth and the analysis proceeds pixel per pixel.

Various tests were performed on samples different than those used at the training stage (covered depth range: 0.54 to 8.86 mm). Higher error was observed for depths smaller than 3 mm. This is mainly due to the low sampling frequency in regards of high thermal conductivity of aluminum which causes aliasing (as confirmed by simulated spectra of Figure 2). In fact, the same study was performed on plastic specimens with convergence within 10 % for depth over 0.6 mm (same sampling frequency).

5. Results

Experiments were conducted to investigate the potential of the developed NN. A variable slot milled in a 10 mm thick aluminum plate was tested (available depth range: 1.2 to 9.5 mm, width: 5 mm). The 9 x 17 network was experimentally trained and figure 4 presents a comparison between obtained and real depth values. Although the network response follows the depth trend, the error increases at greater depths. The strong bidimensional thermal transfer (not taken into account at the learning stage) and the width/depth ratio of the slot does not allow to observe the deeper part of the slot: the output is saturating at about 6 mm for which no contrast was present in the thermal images anyway. At low depths, the sudden discontinuity (10 mm to 1.2 mm) contributes to the difficulty the network has to correctly evaluate this zone. Finally, the low sampling frequency with respect to aluminum thermal conductivity further degrades results as said before.

6. Conclusion

This study is the first to obtain quantitative information from phase value data obtained by PPT. It is concluded that the NN analysis does work providing - for high thermal conductivity specimens such as aluminum - that fast frequency sampling acquisition apparatus is available as confirmed by tests on low thermal conductivity - plastic - specimens. Several improvements could enhance the performance of the method: consider the first few amplitude values (
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); having the NN to work as a classifier with several depth class outputs [9] for more robustness since memory is distributed; develop a kohonen architecture known for its ability to improve the neuron links during the learning process by forming clusters (zones with greater data concentrations represented by more neurons). The analysis presented in this paper brings new opportunities in PPT with the demonstrated ability to extract quantitative data from phase spectra.
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Fig.1. Pulsed Phase Thermography (PPT) principle.
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Fig.2. Simulated phase spectra for aluminum (sampling frequency: 14 Hz).
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Fig. 3. Picture of the experimental apparatus.
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Fig. 4.Result from the 9 x 17 NN: obtained versus real depth values (aluminum slot).
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